259 research outputs found

    Correlated hopping of bosonic atoms induced by optical lattices

    Get PDF
    In this work we analyze a particular setup with ultracold atoms trapped in state-dependent lattices. We show that any asymmetry in the contact interaction translates into one of two classes of correlated hopping. After deriving the effective lattice Hamiltonian for the atoms, we obtain analytically and numerically the different phases and quantum phase transitions. We find for weak correlated hopping both Mott insulators and charge density waves, while for stronger correlated hopping the system transitions into a pair superfluid. We demonstrate that this phase exists for a wide range of interaction asymmetries and has interesting correlation properties that differentiate it from an ordinary atomic Bose-Einstein condensate.Comment: 24 pages with 9 figures, to appear in New Journal of Physic

    Quantum Ratchets for Quantum Communication with Optical Superlattices

    Full text link
    We propose to use a quantum ratchet to transport quantum information in a chain of atoms trapped in an optical superlattice. The quantum ratchet is created by a continuous modulation of the optical superlattice which is periodic in time and in space. Though there is zero average force acting on the atoms, we show that indeed the ratchet effect permits atoms on even and odd sites to move along opposite directions. By loading the optical lattice with two-level bosonic atoms, this scheme permits to perfectly transport a qubit or entangled state imprinted in one or more atoms to any desired position in the lattice. From the quantum computation point of view, the transport is achieved by a smooth concatenation of perfect swap gates. We analyze setups with noninteracting and interacting particles and in the latter case we use the tools of optimal control to design optimal modulations. We also discuss the feasibility of this method in current experiments.Comment: Published version, 9 pages, 5 figure

    Entanglement detection in coupled particle plasmons

    Get PDF
    When in close contact, plasmonic resonances interact and become strongly correlated. In this work we develop a quantum mechanical model, using the language of continuous variables and quantum information, for an array of coupled particle plasmons. This model predicts that when the coupling strength between plasmons approaches or surpasses the local dissipation, a sizable amount of entanglement is stored in the collective modes of the array. We also prove that entanglement manifests itself in far-field images of the plasmonic modes, through the statistics of the quadratures of the field, in what constitutes a novel family of entanglement witnesses. This protocol is so robust that it is indeed independent of whether our own model is correct. Finally, we estimate the amount of entanglement, the coupling strength and the correlation properties for a system that consists of two or more coupled nanospheres of silver, showing evidence that our predictions could be tested using present-day state-of-the-art technology.Comment: 8 pages (6 main text + 2 supplemental), 3 figure

    Structural instability of vortices in Bose-Einstein condensates

    Full text link
    In this paper we study a gaseous Bose-Einstein condensate (BEC) and show that: (i) A minimum value of the interaction is needed for the existence of stable persistent currents. (ii) Vorticity is not a fundamental invariant of the system, as there exists a conservative mechanism which can destroy a vortex and change its sign. (iii) This mechanism is suppressed by strong interactions.Comment: 4 pages with 3 figures. Submitted to Phys. Rev. Let

    Microwave photonics with Josephson junction arrays: Negative refraction index and entanglement through disorder

    Get PDF
    We study different architectures for a photonic crystal in the microwave regime based on superconducting transmission lines interrupted by Josephson junctions, both in one and two dimensions. A study of the scattering properties of a single junction in the line shows that the junction behaves as a perfect mirror when the photon frequency matches the Josephson plasma frequency. We generalize our calculations to periodic arrangements of junctions, demonstrating that they can be used for tunable band engineering, forming what we call a quantum circuit crystal. Two applications are discussed in detail. In a two-dimensional structure we demonstrate the phenomenon of negative refraction. We finish by studying the creation of stationary entanglement between two superconducting qubits interacting through a disordered media. © 2012 American Physical Society.This work was supported by Spanish Governement projects FIS2008-01240, FIS2009-10061, FIS2009-12773-C02-01, and FIS2011-25167 coïŹnanced by FEDER funds; CAM research consortium QUITEMAD; Basque Government Grants No. IT472-10, and No. UPV/EHU UFI 11/55; and PROMISCE, SOLID, and CCQED European projects.Peer Reviewe

    Split vortices in optically coupled Bose-Einstein condensates

    Full text link
    We study a rotating two-component Bose-Einstein condensate in which an optically induced Josephson coupling allows for population transfer between the two species. In a regime where separation of species is favored, the ground state of the rotating system displays domain walls with velocity fields normal to them. Such a configuration looks like a vortex split into two halves, with atoms circulating around the vortex and changing their internal state in a continuous way.Comment: 4 EPS pictures, 4 pages; Some errata have been corrected and thep resentation has been slightly revise

    Construction of exact solutions by spatial traslations in inhomogeneous Nonlinear Schrodinger equations. Applications to Bose-Einstein condensation

    Full text link
    In this paper we study a general nonlinear Schr\"odinger equation with a time dependent harmonic potential. Despite the lack of traslational invariance we find a symmetry trasformation which, up from any solution, produces infinitely many others which are centered on classical trajectories. The results presented here imply that, not only the center of mass of the wave-packet satisfies the Ehrenfest theorem and is decoupled from the dynamics of the wave-packet, but also the shape of the solution is independent of the behaviour of the center of the wave. Our findings have implications on the dynamics of Bose-Einstein condensates in magnetic trapsComment: Submitted to Phys. Re

    Entangled microwaves as a resource for entangling spatially separate solid-state qubits: Superconducting qubits, nitrogen-vacancy centers, and magnetic molecules

    Get PDF
    13 pĂĄgs.; 10 figs.; 2 apps.Quantum correlations present in a broadband two-line squeezed microwave state can induce entanglement in a spatially separated bipartite system consisting of either two single qubits or two-qubit ensembles. By using an appropriate master equation for a bipartite quantum system in contact with two separate but entangled baths, the generating entanglement process in spatially separated quantum systems is thoroughly characterized. Decoherence thermal effects on the entanglement transfer are also discussed. Our results provide evidence that this entanglement transfer by dissipation is feasible, yielding to a steady-state amount of entanglement in the bipartite quantum system which can be optimized for a wide range of realistic physical systems that include state-of-the-art experiments with nitrogen-vacancy centers in diamond, superconducting qubits, or even magnetic molecules embedded in a crystalline matrix. ©2016 American Physical SocietyA.V.G., F.J.R., and L.Q. acknowledge financial support from Facultad de Ciencias at UniAndes-2015 Project “Transfer of Correlations from Non-classically Correlated Reservoirs to Solid State Systems” and Project “Quantum Control of Non-equilibrium Hybrid Systems-Part II,” UniAndes-2015. J.J.G.R. acknowledges support from Spanish Mineco Project No. FIS2012-33022, from EU FP7 Project PROMISCE, from CAM Research Network QUITEMAD+.Peer Reviewe

    Fragmented superfluid due to frustration of cold atoms in optical lattices

    Full text link
    A one dimensional optical lattice is considered where a second dimension is encoded in the internal states of the atoms giving effective ladder systems. Frustration is introduced by an additional optical lattice that induces tunneling of superposed atomic states. The effects of frustration range from the stabilization of the Mott insulator phase with ferromagnetic order, to the breakdown of superfluidity and the formation of a macroscopically fragmented phase.Comment: New version, more results, about 20 page

    Temperature-independent quantum logic for molecular spectroscopy

    Get PDF
    We propose a fast and non-destructive spectroscopic method for single molecular ions that implements quantum logic schemes between an atomic ion and the molecular ion of interest. Our proposal relies on a hybrid coherent manipulation of the two-ion system, using optical or magnetic forces depending on the types of molecular levels to be addressed (Zeeman, rotational, vibrational or electronic degrees of freedom). The method is especially suited for the non-destructive precision spectroscopy of single molecular ions, and sets a starting point for new hybrid quantum computation schemes that combine molecular and atomic ions, covering the measurement and entangling steps.Comment: v3. Substantially enlarged manuscript with details of derivations and calculations in two appendices. To appear in PR
    • 

    corecore